Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 9(12): 2697-711, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25918833

RESUMO

Marine microbial communities experience daily fluctuations in light and temperature that can have important ramifications for carbon and nutrient cycling. Elucidation of such short time scale community-wide dynamics is hindered by system complexity. Hypersaline aquatic environments have lower species richness than marine environments and can be well-defined spatially, hence they provide a model system for diel cycle analysis. We conducted a 3-day time series experiment in a well-defined pool in hypersaline Lake Tyrrell, Australia. Microbial communities were tracked by combining cultivation-independent lipidomic, metagenomic and microscopy methods. The ratio of total bacterial to archaeal core lipids in the planktonic community increased by up to 58% during daylight hours and decreased by up to 32% overnight. However, total organism abundances remained relatively consistent over 3 days. Metagenomic analysis of the planktonic community composition, resolved at the genome level, showed dominance by Haloquadratum species and six uncultured members of the Halobacteriaceae. The post 0.8 µm filtrate contained six different nanohaloarchaeal types, three of which have not been identified previously, and cryo-transmission electron microscopy imaging confirmed the presence of small cells. Notably, these nano-sized archaea showed a strong diel cycle, with a pronounced increase in relative abundance over the night periods. We detected no eukaryotic algae or other photosynthetic primary producers, suggesting that carbon resources may derive from patchily distributed microbial mats at the sediment-water interface or from surrounding land. Results show the operation of a strong community-level diel cycle, probably driven by interconnected temperature, light abundance, dissolved oxygen concentration and nutrient flux effects.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Lipídeos/química , Metagenômica , Archaea/química , Archaea/classificação , Archaea/metabolismo , Austrália , Bactérias/química , Bactérias/classificação , Bactérias/metabolismo , Ecossistema , Lagos/análise , Metabolismo dos Lipídeos , Salinidade , Cloreto de Sódio/análise , Cloreto de Sódio/metabolismo
2.
Nat Commun ; 6: 6372, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25721682

RESUMO

Bacteria from phyla lacking cultivated representatives are widespread in natural systems and some have very small genomes. Here we test the hypothesis that these cells are small and thus might be enriched by filtration for coupled genomic and ultrastructural characterization. Metagenomic analysis of groundwater that passed through a ~0.2-µm filter reveals a wide diversity of bacteria from the WWE3, OP11 and OD1 candidate phyla. Cryogenic transmission electron microscopy demonstrates that, despite morphological variation, cells consistently have small cell size (0.009±0.002 µm(3)). Ultrastructural features potentially related to cell and genome size minimization include tightly packed spirals inferred to be DNA, few densely packed ribosomes and a variety of pili-like structures that might enable inter-organism interactions that compensate for biosynthetic capacities inferred to be missing from genomic data. The results suggest that extremely small cell size is associated with these relatively common, yet little known organisms.


Assuntos
Bactérias/genética , Bactérias/ultraestrutura , Água Subterrânea/microbiologia , Microbiota/genética , Microbiologia da Água , Sequência de Bases , Microscopia Crioeletrônica , Filtração , Tamanho do Genoma/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
3.
ISME J ; 9(2): 333-46, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25083935

RESUMO

Geobacter species may be important agents in the bioremediation of organic and metal contaminants in the subsurface, but as yet unknown factors limit the in situ growth of subsurface Geobacter well below rates predicted by analysis of gene expression or in silico metabolic modeling. Analysis of the genomes of five different Geobacter species recovered from contaminated subsurface sites indicated that each of the isolates had been infected with phage. Geobacter-associated phage sequences were also detected by metagenomic and proteomic analysis of samples from a uranium-contaminated aquifer undergoing in situ bioremediation, and phage particles were detected by microscopic analysis in groundwater collected from sediment enrichment cultures. Transcript abundance for genes from the Geobacter-associated phage structural proteins, tail tube Gp19 and baseplate J, increased in the groundwater in response to the growth of Geobacter species when acetate was added, and then declined as the number of Geobacter decreased. Western blot analysis of a Geobacter-associated tail tube protein Gp19 in the groundwater demonstrated that its abundance tracked with the abundance of Geobacter species. These results suggest that the enhanced growth of Geobacter species in the subsurface associated with in situ uranium bioremediation increased the abundance and activity of Geobacter-associated phage and show that future studies should focus on how these phages might be influencing the ecology of this site.


Assuntos
Bacteriófagos/genética , Geobacter/virologia , Água Subterrânea/virologia , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Bacteriófagos/isolamento & purificação , Biodegradação Ambiental , Genes Virais , Geobacter/genética , Geobacter/isolamento & purificação , Água Subterrânea/microbiologia , Metagenoma , Proteômica , Transcriptoma , Proteínas Virais/genética
4.
ISME J ; 9(4): 1014-23, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361394

RESUMO

A fundamental question in microbial ecology relates to community structure, and how this varies across environment types. It is widely believed that some environments, such as those at very low pH, host simple communities based on the low number of taxa, possibly due to the extreme environmental conditions. However, most analyses of species richness have relied on methods that provide relatively low ribosomal RNA (rRNA) sampling depth. Here we used community transcriptomics to analyze the microbial diversity of natural acid mine drainage biofilms from the Richmond Mine at Iron Mountain, California. Our analyses target deep pools of rRNA gene transcripts recovered from both natural and laboratory-grown biofilms across varying developmental stages. In all, 91.8% of the ∼ 254 million Illumina reads mapped to rRNA genes represented in the SILVA database. Up to 159 different taxa, including Bacteria, Archaea and Eukaryotes, were identified. Diversity measures, ordination and hierarchical clustering separate environmental from laboratory-grown biofilms. In part, this is due to the much larger number of rare members in the environmental biofilms. Although Leptospirillum bacteria generally dominate biofilms, we detect a wide variety of other Nitrospira organisms present at very low abundance. Bacteria from the Chloroflexi phylum were also detected. The results indicate that the primary characteristic that has enabled prior extensive cultivation-independent 'omic' analyses is not simplicity but rather the high dominance by a few taxa. We conclude that a much larger variety of organisms than previously thought have adapted to this extreme environment, although only few are selected for at any one time.


Assuntos
Biodiversidade , Biofilmes , Microbiologia da Água , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Eucariotos/classificação , Eucariotos/genética , Perfilação da Expressão Gênica , Genes de RNAr , Concentração de Íons de Hidrogênio , Mineração , Filogenia
5.
ACS Macro Lett ; 4(1): 1-5, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596390

RESUMO

Nafion is an ion-containing random copolymer used as a solid electrolyte in many electrochemical applications thanks to its remarkable ionic conductivity and mechanical stability. Understanding the mechanism of ion transport in Nafion, which depends strongly on hydration, therefore requires a complete picture of its morphology in dry and hydrated form. Here we report on a nanoscale study of dry versus hydrated as-cast 100 nm Nafion membranes using analytical transmission electron microscopy (TEM) and cryogenic TEM tomography, respectively. For the dry membrane, spherical clusters ∼3.5 nm in diameter corresponding to the hydrophilic sulfonic-acid-containing phase are identified. In contrast, cryo TEM tomography of the hydrated membrane reveals an interconnected channel-type network, with a domain spacing of ∼5 nm, and presents the first nanoscale 3D views of the internal structure of hydrated Nafion obtained by a direct-imaging approach.

6.
7.
Environ Sci Technol ; 48(23): 13703-10, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25380400

RESUMO

The transport of nanoparticles through aqueous systems is a complex process with important environmental policy ramifications. Ferrihydrite nanoparticles commonly form aggregates, with structures that depend upon solution chemistry. The impact of aggregation state on transport and deposition is not fully understood. In this study, small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) were used to directly observe the aggregate structure of ferrihydrite nanoparticles and show how the aggregate structure responds to changing ionic strength. These results were correlated with complementary studies on ferrihydrite transport through saturated quartz sand columns. Within deionized water, nanoparticles form stable suspensions of low-density fractal aggregates that are resistant to collapse. The particles subsequently show limited deposition on sand grain surfaces. Within sodium nitrate solutions the aggregates collapse into denser clusters, and nanoparticle deposition increases dramatically by forming thick, localized, and mechanically unstable deposits. Such deposits limit nanoparticle transport and make transport less predictable. The action of ionic strength is distinct from simpler models of colloidal stability and transport, in that salt not only drives aggregation or attachment but also alters the behavior of preexisting aggregates by triggering their collapse.


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/química , Concentração Osmolar , Microscopia Crioeletrônica , Microscopia Eletrônica de Transmissão , Quartzo , Espalhamento a Baixo Ângulo , Dióxido de Silício/química , Soluções , Suspensões , Água , Difração de Raios X
8.
Nano Lett ; 14(12): 7051-6, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25372973

RESUMO

We report the measurements of transport of ions and uncharged species through carbon nanotube (CNT) porins--short segments of CNTs inserted into a lipid bilayer membrane. Rejection characteristics of the CNT porins are governed by size exclusion for the uncharged species. In contrast, rejection of ionic species is governed by the electrostatic repulsion and Donnan membrane equilibrium. Permeability of monovalent cations follows the general trend in the hydrated ion size, except in the case of Cs(+) ions.

9.
Nature ; 514(7524): 612-5, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25355362

RESUMO

There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these 'CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.


Assuntos
Membrana Celular/química , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanotubos de Carbono , Porinas/metabolismo , Processos Estocásticos , Animais , Transporte Biológico , Células CHO , Sobrevivência Celular , Cricetulus , DNA/metabolismo , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Lipossomos , Nanotubos de Carbono/ultraestrutura , Porinas/química
10.
Front Microbiol ; 5: 407, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25191306

RESUMO

The majority of microorganisms live in complex communities under varying conditions. One pivotal question in evolutionary biology is the emergence of cooperative traits and their sustainment in altered environments or in the presence of free-riders. Co-occurrence patterns in the spatial distribution of biofilms can help define species' identities, and systems biology tools are revealing networks of interacting microorganisms. However, networks of inter-dependencies involving micro-organisms in the planktonic phase may be just as important, with the added complexity that they are not bounded in space. An integrated approach linking imaging, "Omics" and modeling has the potential to enable new hypothesis and working models. In order to understand how cooperation can emerge and be maintained without abilities like memory or recognition we use evolutionary game theory as the natural framework to model cell-cell interactions arising from evolutive decisions. We consider a finite population distributed in a spatial domain (biofilm), and divided into two interacting classes with different traits. This interaction can be weighted by distance, and produces physical connections between two elements allowing them to exchange finite amounts of energy and matter. Available strategies to each individual of one class in the population are the propensities or "willingness" to connect any individual of the other class. Following evolutionary game theory, we propose a mathematical model which explains the patterns of connections which emerge when individuals are able to find connection strategies that asymptotically optimize their fitness. The process explains the formation of a network for efficiently exchanging energy and matter among individuals and thus ensuring their survival in hostile environments.

11.
Langmuir ; 30(33): 9931-40, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25079430

RESUMO

Aggregation impacts the reactivity, colloidal stability, and transport behavior of nanomaterials, yet methods to characterize basic structural features of aggregates are limited. Here, cryo-transmission electron microscope (cryo-TEM) based tomography is utilized as a method for directly imaging fragile aggregates of nanoparticles in aqueous suspension and an approach for extracting quantitative fractal dimensions from the resulting three-dimensional structural models is introduced. The structural quantification approach is based upon the mass autocorrelation function, and is directly comparable with small-angle X-ray scattering (SAXS) models. This enables accurate characterization of aggregate structure, even in suspensions where the aggregate cluster size is highly polydisperse and traditional SAXS modeling is not reliable. This technique is applied to study real suspensions of ferrihydrite nanoparticles. By comparing tomographic measurements with SAXS-based measurements, we infer that certain suspensions contain polydisperse aggregate size distributions. In other suspensions, fractal-type structures are identified with low intrinsic fractal dimensions. The fractal dimensions are lower than would be predicted by simple models of particle aggregation, and this low dimensionality enables large, low-density aggregates to exist in stable colloidal suspension.

12.
Front Microbiol ; 5: 367, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120533

RESUMO

Metagenomic studies are revolutionizing our understanding of microbes in the biosphere. They have uncovered numerous proteins of unknown function in tens of essentially unstudied lineages that lack cultivated representatives. Notably, few of these microorganisms have been visualized, and even fewer have been described ultra-structurally in their essentially intact, physiologically relevant states. Here, we present cryogenic transmission electron microscope (cryo-TEM) 2D images and 3D tomographic datasets for archaeal species from natural acid mine drainage (AMD) microbial communities. Ultrastructural findings indicate the importance of microbial interconnectedness via a range of mechanisms, including direct cytoplasmic bridges and pervasive pili. The data also suggest a variety of biological structures associated with cell-cell interfaces that lack explanation. Some may play roles in inter-species interactions. Interdependences amongst the archaea may have confounded prior isolation efforts. Overall, the findings underline knowledge gaps related to archaeal cell components and highlight the likely importance of co-evolution in shaping microbial lineages.

13.
Mol Microbiol ; 90(4): 776-95, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24102805

RESUMO

In Caulobacter crescentus, the PopZ polar scaffold protein supports asymmetric cell division by recruiting distinct sets of binding partners to opposite cell poles. To understand how polar organizing centres are established by PopZ, we investigated a set of mutated PopZ proteins for defects in sub-cellular localization and recruitment activity. We identified a domain within the C-terminal 76 amino acids that is necessary and sufficient for accumulation as a single subcellular focus, a domain within the N-terminal 23 amino acids that is necessary for bipolar targeting, and a linker domain between these localization determinants that tolerates large variation. Mutations that inhibited dynamic PopZ localization inhibited the recruitment of other factors to cell poles. Mutations in the C-terminal domain also blocked discrete steps in the assembly of higher-order structures. Biophysical analysis of purified wild type and assembly defective mutant proteins indicates that PopZ self-associates into an elongated trimer, which readily forms a dimer of trimers through lateral contact. The final six amino acids of PopZ are necessary for connecting the hexamers into filaments, and these structures are important for sub-cellular localization. Thus, PopZ undergoes multiple orders of self-assembly, and the formation of an interconnected superstructure is a key feature of polar organization in Caulobacter.


Assuntos
Motivos de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/química , Proteínas de Bactérias/genética , Caulobacter crescentus/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Cromossomos Bacterianos/metabolismo , Dicroísmo Circular , Mutação Puntual , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Estrutura Quaternária de Proteína
14.
Appl Environ Microbiol ; 79(20): 6369-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934497

RESUMO

Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.


Assuntos
Citocromos/metabolismo , Geobacter/enzimologia , Geobacter/metabolismo , Urânio/metabolismo , Citocromos/genética , Fímbrias Bacterianas/enzimologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Deleção de Genes , Geobacter/genética , Geobacter/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia por Absorção de Raios X
15.
BMC Genomics ; 14: 485, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23865623

RESUMO

BACKGROUND: Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. RESULTS: We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. CONCLUSION: The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that subtle, but important genomic differences, coupled with unknown differences in gene expression, distinguish these organisms enough to allow for co-existence. Overall this study reveals shared features of organisms from the Thermoplasmatales lineage and provides new insights into the functioning of AMD communities.


Assuntos
Biofilmes , Genômica , Mineração , Thermoplasmales/genética , Thermoplasmales/fisiologia , Aerobiose/genética , Aldeído Oxirredutases/genética , Aminoácidos/biossíntese , Parede Celular/metabolismo , Resistência a Medicamentos/genética , Transporte de Elétrons , Metabolismo Energético/genética , Fermentação , Genes Arqueais/genética , Ilhas Genômicas/genética , Glioxilatos/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Metais/toxicidade , Imagem Molecular , Anotação de Sequência Molecular , Complexos Multienzimáticos/genética , Filogenia , Thermoplasmales/citologia , Thermoplasmales/metabolismo , Trealose/biossíntese
16.
ACS Nano ; 7(6): 4946-53, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23705800

RESUMO

Protein-based assemblies with ordered nanometer-scale features in three dimensions are of interest as functional nanomaterials but are difficult to generate. Here we report that a truncated S-layer protein assembles into stable bilayers, which we characterized using cryogenic-electron microscopy, tomography, and X-ray spectroscopy. We find that emergence of this supermolecular architecture is the outcome of hierarchical processes; the proteins condense in solution to form 2-D crystals, which then stack parallel to one another to create isotropic bilayered assemblies. Within this bilayered structure, registry between lattices in two layers was disclosed, whereas the intrinsic symmetry in each layer was altered. Comparison of these data to images of wild-type SbpA layers on intact cells gave insight into the interactions responsible for bilayer formation. These results establish a platform for engineering S-layer assemblies with 3-D architecture.


Assuntos
Proteínas de Bactérias/química , Nanotecnologia/métodos , Bacillaceae , Modelos Moleculares , Conformação Proteica
18.
ISME J ; 7(2): 338-50, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23038172

RESUMO

Iron-reducing bacteria (FeRB) play key roles in anaerobic metal and carbon cycling and carry out biogeochemical transformations that can be harnessed for environmental bioremediation. A subset of FeRB require direct contact with Fe(III)-bearing minerals for dissimilatory growth, yet these bacteria must move between mineral particles. Furthermore, they proliferate in planktonic consortia during biostimulation experiments. Thus, a key question is how such organisms can sustain growth under these conditions. Here we characterized planktonic microbial communities sampled from an aquifer in Rifle, Colorado, USA, close to the peak of iron reduction following in situ acetate amendment. Samples were cryo-plunged on site and subsequently examined using correlated two- and three-dimensional cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission X-ray microscopy (STXM). The outer membranes of most cells were decorated with aggregates up to 150 nm in diameter composed of ∼3 nm wide amorphous, Fe-rich nanoparticles. Fluorescent in situ hybridization of lineage-specific probes applied to rRNA of cells subsequently imaged via cryo-TEM identified Geobacter spp., a well-studied group of FeRB. STXM results at the Fe L(2,3) absorption edges indicate that nanoparticle aggregates contain a variable mixture of Fe(II)-Fe(III), and are generally enriched in Fe(III). Geobacter bemidjiensis cultivated anaerobically in the laboratory on acetate and hydrous ferric oxyhydroxides also accumulated mixed-valence nanoparticle aggregates. In field-collected samples, FeRB with a wide variety of morphologies were associated with nano-aggregates, indicating that cell surface Fe(III) accumulation may be a general mechanism by which FeRB can grow while in planktonic suspension.


Assuntos
Compostos Férricos/metabolismo , Geobacter/crescimento & desenvolvimento , Água Subterrânea/microbiologia , Nanopartículas , Bactérias/metabolismo , Biodegradação Ambiental , Colorado , Geobacter/metabolismo , Ferro/metabolismo , Microscopia Eletrônica , Minerais/metabolismo , Oxirredução , Análise Espectral , Microbiologia da Água
19.
Proc Natl Acad Sci U S A ; 109(32): 12968-73, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22822216

RESUMO

The concept of a folding funnel with kinetic traps describes folding of individual proteins. Using in situ Atomic Force Microscopy to investigate S-layer assembly on mica, we show this concept is equally valid during self-assembly of proteins into extended matrices. We find the S-layer-on-mica system possesses a kinetic trap associated with conformational differences between a long-lived transient state and the final stable state. Both ordered tetrameric states emerge from clusters of the monomer phase, however, they then track along two different pathways. One leads directly to the final low-energy state and the other to the kinetic trap. Over time, the trapped state transforms into the stable state. By analyzing the time and temperature dependencies of formation and transformation we find that the energy barriers to formation of the two states differ by only 0.7 kT, but once the high-energy state forms, the barrier to transformation to the low-energy state is 25 kT. Thus the transient state exhibits the characteristics of a kinetic trap in a folding funnel.


Assuntos
Bacillaceae/química , Proteínas de Bactérias/química , Glicoproteínas de Membrana/química , Modelos Moleculares , Polímeros/química , Conformação Proteica , Dobramento de Proteína , Silicatos de Alumínio , Microscopia Crioeletrônica , Cristalização , Cinética , Glicoproteínas de Membrana/ultraestrutura , Microscopia de Força Atômica , Temperatura , Fatores de Tempo
20.
Microsc Res Tech ; 75(6): 829-36, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22213355

RESUMO

We present a modern, light portable device specifically designed for environmental samples for cryogenic transmission-electron microscopy (cryo-TEM) by on-site cryo-plunging. The power of cryo-TEM comes from preparation of artifact-free samples. However, in many studies, the samples must be collected at remote field locations, and the time involved in transporting samples back to the laboratory for cryogenic preservation can lead to severe degradation artifacts. Thus, going back to the basics, we developed a simple mechanical device that is light and easy to transport on foot yet effective. With the system design presented here we are able to obtain cryo-samples of microbes and microbial communities not possible to culture, in their near-intact environmental conditions as well as in routine laboratory work, and in real time. This methodology thus enables us to bring the power of cryo-TEM to microbial ecology.


Assuntos
Microscopia Crioeletrônica/métodos , Congelamento , Sistemas Automatizados de Assistência Junto ao Leito , Manejo de Espécimes/métodos , Microbiologia Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...